How to Speed up Optimization? Opposite-center Learning and Its Application to Differential Evolution
نویسندگان
چکیده
This paper introduces a new sampling technique called Opposite-Center Learning (OCL) intended for convergence speed-up of meta-heuristic optimization algorithms. It comprises an extension of Opposition-Based Learning (OBL), a simple scheme that manages to boost numerous optimization methods by considering the opposite points of candidate solutions. In contrast to OBL, OCL has a theoretical foundation – the opposite center point is defined as the optimal choice in pair-wise sampling of the search space given a random starting point. A concise analytical background is provided. Computationally the opposite center point is approximated by a lightweight Monte Carlo scheme for arbitrary dimension. Empirical results up to dimension 20 confirm that OCL outperforms OBL and random sampling: the points generated by OCL have shorter expected distances to a uniformly distributed global optimum. To further test its practical performance, OCL is applied to differential evolution (DE). This novel scheme for continuous optimization named Opposite-Center DE (OCDE) employs OCL for population initialization and generation jumping. Numerical experiments on a set of benchmark functions for dimensions 10 and 30 reveal that OCDE on average improves the convergence rates by 38% and 27% compared to the original DE and the Oppositionbased DE (ODE), respectively, while remaining fully robust. Most promising are the observations that the accelerations shown by OCDE and OCL increase with problem dimensionality.
منابع مشابه
Multi-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect
This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance. First the problem is encoded with a...
متن کاملEfficient Data Mining with Evolutionary Algorithms for Cloud Computing Application
With the rapid development of the internet, the amount of information and data which are produced, are extremely massive. Hence, client will be confused with huge amount of data, and it is difficult to understand which ones are useful. Data mining can overcome this problem. While data mining is using on cloud computing, it is reducing time of processing, energy usage and costs. As the speed of ...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملPareto Optimal Multi-Objective Dynamical Balancing of a Slider-Crank Mechanism Using Differential Evolution Algorithm
The present paper aims to improve the dynamical balancing of a slider-crank mechanism. This mechanism has been widely used in internal combustion engines, especially vehicle engines; hence, its dynamical balancing is important significantly. To have a full balance mechanism, the shaking forces and shaking moment of foundations should be eliminated completely. However, this elimination is usuall...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کامل